
Guest lecture: James Wu 

[00:00:00.79] My name is James Wu. I'm part of the UDub bioengineering program. I also work 

with professors in computer science, in BioE and in applied math, as well.  

[00:00:15.29] I wanted to present this concept for the class, which is that a CPU is just a rock we 

tricked into thinking. Now this is a humorous quote, of course. But it conveys a lot of truth and a 

lot of commonalities that we must think about in your engineering between what we consider 

thinking and what computation is and the nature of computation itself.  

[00:00:39.79] We might not think of computers as very similar to human beings in terms of 

thinking. But that's probably because we do not think about the nature of thinking very deeply.  

[00:00:53.21] So what is thinking? We have to consider what we mean when we do this. We 

have some senses that we capture from the real world, either by touch, hearing, vision, etc. Then 

we consider some sort of goal that we need to reach. And then we plan out and execute a set of 

motor movements.  

[00:01:18.49] Now I say motor movements, even though your actions might be muscular. It 

might be in terms of speaking. Those are also motor movements of your mouth and vocal chords. 

And you might also be doing things like gesturing or communicating via another device. But all 

of these actions are things that any computing device must also undergo, the sensing, processing, 

and planning the execution loops.  

[00:01:56.15] So let's look at some examples of what thinking might be.  

[00:02:04.77] These are three appliances, a light bulb, a heating element, stove. You might not 

think of them as necessarily thinking, but in actuality, they may contain elements or, in fact, all 

of what might be requisite of what we call thinking. For example a space heater, shown there on 

the left, you may not have come into contact very much, if you don't live in a cold climate. But it 

has a sensor for sensing the temperature of the room. It has a very simple digital logic. Either the 

temperature drops below a certain threshold and it turns on, or the temperature rises above a 

certain threshold that it internally knows about. And the heater turns off. And finally, has an 

execution, has something that it executes, which is to turn on the heating element, thus making 

the room warm.  

[00:03:07.56] This sensing, processing, and execution loop, as you can see, is in all of our even 

simplest appliances. Now a light switch might only have part of that group in that it has an 

output. It has some sort of logic that you might control. And it does not have a sensor. You 

would be the sensing and control elements. But it will execute. Similarly, ovens do the same 

thing as the heater we mentioned before.  

[00:03:39.87] We want to it focus, in particular, about the middle part, the processing, because 

while heaters and ovens have very simple processing in terms of sensing the state and converting 

that into an output, in which case, this is just on or off, other devices that were more used to in 

our daily lives have a lot more processing. And in a sense, what we're doing is using power, 



using some sort of amount of driving gradient, the electricity in our walls, some converted form 

of solar energy, or some other type of source of energy in order to drive computation downhill, 

as it were. Like water flowing downhill, we drive electricity through a carefully planned set of 

routes in order for it to do decisive actions. And we call that computation.  

[00:04:43.62] So here are some examples of what we used modern electrical infrastructure for. 

The driving force comes in from the wall and goes through billions of well planned routes. We 

call them circuits. And that converts into all of the actions that we represent as either apps or 

even sound over the audio waves or visual images over the TV.  

[00:05:15.12] But in essence, this is no different from the simple flipping logic that was in the 

heating element. So how did this happen? How did the simple logic that are present in our 

everyday appliances turn into these marvelous examples of complex computation?  

[00:05:33.96] Well, in the next segment, I'm going to tell you how brains appliances, dominoes, 

and even iPhones are similar. And that is, what we do is we take a basic computing pattern, the 

basic elements of logic itself, and place them in complex structures inside a device, such that 

computing patterns begin to emerge. What are some examples of this?  

[00:06:02.28] Well, those of you who game may be very familiar with this type of example. So 

on the bottom, I want you to pay attention to is an example of a digital CPU implemented in 

Minecraft. This is kind of a really fun and almost ridiculous example, because Minecraft itself is, 

of course, a game that runs in a computer. But for those of you who don't know, Minecraft 

allows you to play virtual blocks and build things at will in this virtual universe.  

[00:06:37.23] One of the things that allows you to place down is a mysterious substance called 

Redstone. And Redstone, a little bit, has the properties that we attribute to electricity. It doesn't 

flow as quickly. So that in game, you can still manipulate it and understand what's going on. But 

essentially, it's almost like electricity flowing down a wire. And using a combination of 

Redstones, you can actually form logical gates, such as AND gates or OR gates that form the 

basis of what we think of as computing.  

[00:07:16.55] So using those basic structures which are in one of these diagrams players have 

helpfully compiled, you can build really, really large contraptions. In game, this would be 

hundreds of meters long with respect to your virtual character. But as you place down these 

blocks in careful order, you can actually make calculators. You can make contraptions just like 

the appliances we talked about earlier. That will be a lot simpler. All the way down to a complex 

CPU, what we call a processing unit.  

[00:07:54.17] So this might seem daunting if you don't have experience with making digital logic 

into CPUs, but a very simple example that a lot of people can intuitively understand is above. So 

on the top, what I'm showing are a YouTube video of a YouTuber making logic circuits out of 

dominoes.  

[00:08:20.45] So dominoes are something that we do understand. You knock one over. It triggers 

the next one over and so on. But if you place them in careful patterns, you can also make logic 



appear. How? Well, on the right hand side, you see a diagram that says A or B. That is a basic 

word logic gate. What does that mean?  

[00:08:44.16] Well, whether or not. So if you imagine it as being tripped from the bottom up to 

the top, whether or not you trip the left hand route or the right hand route, you will always end up 

with collapsed dominoes in the middle top. So if you consider the left hand of the route as A and 

the right hand as the B, and the top as the output, A or B will always result in C being tripped. 

Now this is very simple, of course.  

[00:09:18.20] But that's just one simple building foundation block. And if you weighed it out in 

very complicated structures, like you see in this photo to the left, which you can check out on 

YouTube, you can create even more complex mechanisms. On the right is a XOR circuit, so it 

will trip if the left hand side or the right hand side, from the bottom, is tripped. But not if it's 

tripped both at the same time. You can imagine in your head a little bit how this works. If you 

trip it from the left hand side, it will flow through to the top. Same thing if you do it from the 

right hand side. But if you trip both at the same time, these two pathways of dominoes will 

actually jam up in the middle and not trip up the top.  

[00:10:08.36] Why are these important? Because if you place enough of them in a careful 

enough manner, you can get complicated things like addition, subtraction, multiplication, and so 

on. So what if you wanted to do this faster? Of course, dominoes are super slow. And actually so 

are Redstone inside this game. It kind of has to be so that you can keep track of what's going on.  

[00:10:31.33] Well, what we've also made are things like accelerators. Now these are more 

historical objects. But once upon a time, not very long ago, less than a generation ago from this 

lecture, we had digital computers. We did not have digital computers, rather. And we had that 

mechanical computing. And people would drive these mechanical computers.  

[00:11:00.40] So on the top is an example of a slide rule. If you've never seen one before, you 

might see it in older movies, like Apollo 13, where it's prominently featured. But what people 

have discovered is that you can do multiplication and division very quickly, without doing it 

longhand on a piece of paper, just by putting marks on a ruler, logarithmically.  

[00:11:25.96] Why is this important? Well, you know that if you take two rulers, you can 

actually do addition and subtraction, because if you have three inches on a ruler and three inches 

on the other ruler, that gets you 6, if you line them up side by side. You can do the same thing if 

you added algorithmic, if you draw the marks not linearly, like 1, 2, 3, 4, but logrithmically, 1, 2, 

3, 4 with spacing decreasing as the numbers get higher.  

[00:11:58.78] And this is a very clever way, because if you line up the marks, 1 here with the 3 

here, it will be like multiplying by 3 on the top. And I invite you to try any online slide rule or 

auto slide rule apps, which you can download for your phone and try out how the length add up 

to do multiplication and division.  

[00:12:25.71] On the bottom is another example of an accelerator that we built into mechanical 

space. This is a Curta. It's an early computer. It was actually a very expensive computer at the 



time, or more appropriately a calculator that can do addition, subtraction, division, and 

multiplication simply by turning gears. So there's a lot of stuff on this diagram. And I invite you 

to check out a YouTube video of how this works.  

[00:12:57.62] But essentially, you set different dials and gears and turn the handle. And it will do 

the basic arithmetic operations for you inside, simply by using gears, which we know can 

multiply and add and divide.  

[00:13:16.33] To the left is an example, is a simpler example, of a marble computer, which if 

you YouTube for a marble computer, you can also find. And essentially, this is an example of 

digital computation, digital binary computation. Here, digital doesn't mean electronic. Digital 

just means on or off states, much like the heater circuit we were talking about, except that heater 

circuit has one bit.  

[00:13:45.13] In this marble example, there are three levers shown. The total contraption actually 

had four. Three levers shown. Each of these is a bit. And you can actually set them 

independently, using marbles. And thereby forming a binary adder that is able to compute up to 2 

to the 4th power, because of how binary logic works.  

[00:14:13.87] So if we can make all of these things appear in mechanical space. And in the 

example of the Curta, or in the example of the slide rule, do simple computations. I call them 

simple, because you can do them longhand on the sheet of paper. It's just very slow. And we can 

do the simple computations really, really quickly, faster than any human can do them. That 

means what we made is an accelerator, something that takes a simple set of operations and do 

them much faster than we can imagine. And thereby producing almost magical effects of getting 

from the sensor to the output almost immediately.  

[00:14:59.92] So do humans have accelerators? Do brains have accelerators? Because we've just 

shown that we can do computing patterns in Minecraft, in marbles, in dominoes, and even in 

length of a ruler, if you place the marks carefully. So it must mean that human minds also 

contain these type of underlying computing patterns.  

[00:15:27.49] Can we look for examples of them, things that we do faster than we can possibly 

reason about them, something that almost happens immediately to us.  

[00:15:38.26] I want you to think of a few examples on your own. But one of the key things, one 

of the prime examples of this, is facial recognition.  

[00:15:48.91] So why is this so important in computing as a basic example of an accelerator? 

Well, like I've shown before, where a slide rule or that Curta gear addition, subtraction machine 

doesn't really do anything unimaginable. All it does is addition and subtraction and really, really 

quickly. But the output is faster than any human can ever reason out. The same thing really 

happens with facial recognition.  

[00:16:23.87] You can, afterwards, really really excruciatingly slowly describe what makes a 

person look like themselves, the eyes, the spacing, the mouth, the hairline, etc. the facial bone 



structure. And you might be able to, over a period of hours-- I mean, we call that doing police 

sketches-- describe what makes a face look like someone or doesn't look like someone.  

[00:16:51.92] The action of recognizing someone really happens to you. It's so fast you don't 

really even realize what just, what your brain just actually did. And this is something that we've 

been trying to replicate in computing for a long time. And we've only been able to recently do 

them with the advent of deep learning with any sort of speed and accuracy.  

[00:17:16.23] This is an example of an accelerator at work, a series of computations that, with 

dedicated hardware in portions of her brain, like the fusiform gyrus, that run so fast that we 

cannot really describe what is going on deep down, until we take vastly more amount of time.  

[00:17:40.26] This is an example that is in neurological hardware, our brains, as well as even in 

our consumer hardware. So as the Curta or the slide rule was to arithmetic, today we have 

dedicated chips and dedicated cards for different types of computation. You might have heard of 

a graphical processing unit or a GPU. Or sometimes, you might just hear it as a video card, if 

you're a gamer.  

[00:18:12.89] Those are hardware that are specifically built for the purpose of computing things 

like light, 3D geometries, and things like visual output much faster than your CPU can do them. 

In this case, you can kind of think of the CPU as describing how to recognize the face, whereas a 

graphics card might be just doing it extremely quickly and handing you the end result.  

[00:18:45.31] Your brain does the same thing. And so what we might conclude with the brain, or 

learn from the brain, is how exactly we are able to use all of these accelerators that might be 

present in our brain. How do we know there are accelerators? Because we can do all of these 

actions much faster than we can ever reason about them. And how we might be able to reverse 

engineer or try to figure out how these accelerators in our brains work, in order to be able to do 

some of the similar marvelous tasks in computing for people who might be paralyzed, who might 

have injury, who might have neurological disease. And this is part of the goal of the Center for 

Sensory Motor and Neuroengineering.  

[00:19:42.52] The problem is that the architecture of brains is very different from the 

architecture of CPUs in Silicon. In general, when we program or design hardware in Silicon, we 

use a bit more of a sequential architecture. This is a little bit simplifying the architecture of what 

happens in computing. But in comparison to neurons and biological structure, we have a very 

simple sequential and quick architecture in comparison to a relatively slow, but tremendously 

parallel architecture.  

[00:20:22.81] What do I mean by that? Well, when we program a computer to do is a set of 

serious and complex tasks, generally, we have a set of groups or a set of linear pathways that 

runs really, really quickly.  

[00:20:44.23] Your phone might do this. For example, it might wait around and in a group, keep 

checking for an action, for example, user interaction, you touching the touch screen, clicking a 



mouse, typing on a keyboard. Once it senses that, then it carries over those discrete actions over 

to some other process.  

[00:21:05.18] The architecture of brains cannot afford to operate in this way. Why not? Because 

neurons are slow. They don't use electrical activity directly. Instead, we use electrochemical 

reactions that, instead of running at the speed of light or propagating, transmitting at the speed of 

light, our neurons in our bodies and our brains operate much more close to the speed of walking 

or running.  

[00:21:37.89] This is dependent on whether or not the neurons myelinated. But it's safe to say 

that, on average, in your brain, electrical signals or electrochemical signals are propagating 

roughly around the pace of walking. So to overcome these limitations that are a result of 

biological evolution and still do extremely complex computations, like facial recognition or 

motor movement, which I'll go into in a second, our brains have evolved tremendously parallel 

architecture. It operates and does computations all at once and wait for them to finish all at once, 

in order to result in the actions and the planning and execution that we use to do our everyday 

lives.  

[00:22:29.53] This is a very important distinction, because no matter how parallel we make our 

silicon architecture, we have not remotely come close to a type of parallelism that exists in 

brains. And this is a very sticky point in terms of being able to develop technologies that perform 

neurological behaviors as quickly, as well as being able to read out from the brain.  

[00:22:53.82] We [? at the CSNE, ?] we build or try to lay down the foundations of neural 

implants. But while it is relatively easier to tap into a piece of electronic, because we know that 

at a certain point, we might-- it might be conveying something we can understand, such as if we 

tapped into this loop here, we might be able to detect user events, like you touching the touch 

screen. But if we tapped into any individual neuron or even clusters of 200 300 neurons, you 

might be only getting a very, very small part of the picture, because the rest of the activity is 

happening elsewhere in this tremendously parallel architecture.  

[00:23:41.12] So let's combine what we have learned so far. What we learned is that the neural 

architecture is a lot more difficult to read from than a silicon base or a digital architecture that we 

use in modern electronics, because we need to look at more of the brain, vastly more portions of 

the brain, to get the whole picture of what the brain is doing at any period of time, because it is a 

lot more parallel.  

[00:24:12.23] In addition, much like modern computing our brains also use accelerators or 

computing motifs or competing patterns that perform tasks way faster than we can reason about 

them. The combination of these two means a couple of implications, all of which we run into 

when we try to engineer neural implants for brains.  

[00:24:40.68] So this is an example. There is a huge performance difference between modern 

computing and its ability to do what we consider simple motor tasks and what humans are able to 

do.  



[00:24:54.69] So on the left hand side, you seen an animated image of a robot trying to clean a 

dish. In fact, this image is actually sped up. On the right hand side, you see a human girl, albeit a 

world champion in cup stacking. But you can see the tremendous amount of speed difference in 

being able to manipulate common everyday objects.  

[00:25:20.25] The left robot took a PhD project to complete. In fact, it took many PhD projects at 

a world class robotic institution to complete. Why did it take that much effort?  

[00:25:32.91] Well, the everyday tasks of taking two objects of different shapes, such as a cup 

and the sponge, in this case, which are not rigid, but compliant, in the case of the sponge and 

have it sense, using a variety of sensors, amount of pressure, torque, and force that are 

transmitted through the sponge handle, is a mind-bogglingly large amount of competition. And 

that's why it took so much effort to even get a robot to slowly wash dishes.  

[00:26:09.66] On the other hand, our brains have accelerators, have motor accelerators, that are 

purpose built to sense things like pressure and shear and force and compliance and allow us to do 

things like cleaning dishes very, very quickly and very effectively. But if you describe to your 

computer an algorithm for turning all of these into forces that won't break the glass or won't 

clean the glass incompletely, you would have a very, very hard time.  

[00:26:40.63] This brings us to an early realization in the 1980s by a famous roboticist at 

Carnegie Mellon, Hans Moravec, who coined the Moravec's theorem or the Moravec's paradox, 

that it's comparatively easy to make computers exhibit adult level performance intelligence test 

or playing checkers and really difficult or impossible to give them basic skills of even a one-

year-old.  

[00:27:12.17] This is known, well-known, back in the 90s. And it still is true today. Things that 

we think of as very simple, such as movement and washing dishes or cooking, are actually really, 

really difficult computational problems that we simply had and evolved accelerators over 

millions of years in order to perform without us thinking about it. And now that we have to 

reason about them, in terms of, for example, building devices to rehabilitate patients, whose 

brains have been damaged or whose limbs have been damaged in some way, then immediately 

we realize how difficult this problem is, when healthy individuals don't really even have to think 

about how to perform these tasks.  

[00:28:08.55] And why does this matter? Well, amputation and paralysis are things that affect 

millions of patients. And the current standard of care are some very poorly controlled prosthetics, 

such as the hook hand, which really is operated by steel cable and the position by which you hold 

your elbows and even very simple myoelectric devices.  

[00:28:34.93] So in the middle you see a photo of a myoelectric electric device. What it does is 

sense, very poorly, muscle activity, in general, so that you can open and close the hand, which 

does not have more than one degree of freedom. Basically, all it does is open or close. There is 

no individual finger movement, no adjusting, everything that you really need to do everyday 

tasks, like using a spoon or something like that.  



[00:29:03.84] And for total paralysis or individuals with a much more profound quadriplegia, our 

standard of care is actually something like a sip and puff device, where, if the individual's facial 

muscles are not paralyzed, you sip and puff air from this tube in order to do a simple one degree 

of freedom control, like clicking a mouse. The rest is perform with things like eye trackers, 

presuming that the patient has some control over eye movement.  

[00:29:38.04] So overall, the hard problem is not something like playing chess or doing abstract 

mathematics. Instead, it is doing things like cooking.  

[00:29:51.85] So in this video, you can see a patient using the standard of care prosthetic, a splint 

hook, in order to tie their shoelaces. You can see how much practice this takes in order to 

accomplish something that we take for granted everyday, which is manipulation of a soft body 

object, like rope or string or shoelaces or even your headphone cables.  

[00:30:18.44] My research focuses on the interaction of prosthetics and motor control. And this 

brings us to something we called, the control problem.  

[00:30:30.32] The control problem is actually very well illustrated by a fun flash game that 

appeared about 5 to 10 years ago called, QWOP. It's called QWOP because it's a bit silly. You 

control a running person. But instead of controlling legs as your own legs, which you don't think 

about running very much when you're a healthy individual, you just sort of run forward.  

[00:30:58.44] But if you had to control your legs individually, your muscles legs individually, 

and used something simple like Q and W, the keys Q and W to control your thighs, and O,M,P 

control your calves, then the problem becomes ridiculously hard, because it separates you from 

your motor accelerator. You no longer have the ability to do this action without thinking about it. 

Now you have to reason, at the very slow speed of reasoning. And most people who play this 

game end up as in this image, a very badly collapsed person who cannot run, because you are not 

able to think fast enough to control individual muscles with any degree of speed.  

[00:31:53.75] Why is motor control difficult? Well, it's also difficult mathematically, too, 

because if you think about the problem of positioning two angles in order for an arm to reach a 

desired location, as you can see from the bottom part here, if you had [? two fixed ?] arm length, 

and all you were able to control are the angles of these arm length, and you wanted to hit a 

desired location, xy, it's a solvable, but a little bit more difficult problem.  

[00:32:28.64] You might be able to solve this if you had taken trigonometry, for example. You 

would use two arctangents or arccosines to try to solve this problem. And this is a solvable 

problem with only two joints. But once it reaches three joints, it becomes a mathematically 

incompletely solved problem. That's because there are multiple solutions. And things like 

approximations become a lot more important in trying to design a robot that can solve for a three 

joint problem.  

[00:33:08.27] Well, let's look at your hand. How many joints are present in the human hand? 

Well, that's a very, very large number of joints, actually, about 30 joints in one arm and hand 



alone. And that you're probably able to actively control about 18 separate degrees of freedom. 

That is, 18 individual or axes of movement.  

[00:33:37.09] You can try it out on your own hand or finger. In fact, even your thumb alone, you 

can bend it. You can turn it from side to side. You can also extend it out away from your palm. 

That is a lot of degrees of freedom just simply on the human thumb alone. And to solve the 

mathematical problem of positioning all of these joints in order to do common everyday tasks, 

like using a spoon or fork, is a very, very hard computational problem, without the use of the 

evolved accelerator that we all take for granted.  

[00:34:16.05] So in order to restore function to patients who have [? lost ?] these types of upper 

limb motor function, we must first come close to understanding and solving control problems 

and understanding how that occurs in the brain.  

[00:34:36.10] Now augmenting humans isn't new. From different museums, you can see 

showpieces of prosthetic toes, prosthetic noses, even, and very meticulously crafted arms that 

either might be mobile or not mobile, or sensory augmentation, like in an ear trumpet for people 

who have lost hearing.  

[00:34:59.94] Now the modern design and intent to build things like cyborgs is a long, long 

standing one that extends throughout history. But like we discussed, in order to do any of these 

things, we must overcome all of these challenges. And furthermore, we must also consider their 

implications. And so just as we have to solve and understand and explore more of the 

neurological basis of massively parallel computation, that is, solving problems in everyday life in 

very, very many parts of the brain all at the same time, even though we currently only have the 

ability to read from one or a few spots at a time, like in this case.  

[00:35:52.26] In the BrainGate program, where we've implied that some electrodes into just the 

one portion of what we think is the motor accelerator for the humans called, the primary motor 

cortex. To things like assistive exoskeletons that actually don't implant into the brain or the 

nervous system, but instead, just tries to sense your output and assist it, to things that are 

mounted, assistive exoskeleton on your arms that might respond to various different types of 

motions, as well as technologies that try to activate your muscles directly, via electrical 

stimulation or shock.  

[00:36:36.42] All of these devices lie along an augmentation and an assistive axes. And some of 

her most successful technologies, in fact, are merely assistive and noninvasive. And what we are 

building towards is a future, as we understand more and more these spaces of computation and 

understanding the readouts from the brain, a more futuristic, invasive, and more augmentative set 

of tools that allow us to achieve possibly more than the current capacities of humans.  

[00:37:24.60] Already, we have devices in our pockets, smartphones, that do already extend the 

capabilities of humans. It can access information and do computation faster than we can. But the 

traditional actions that we consider easy, that require accelerators, things like facial recognition, 

things like motor movement, we still cannot match with modern silicon. And I think that, one 

day, we will. But we really have to think about the ethical and sociological ramifications of 



building these systems in the future, as well as working towards a more complete understanding 

of how neuroscience and technology might combine with each other, too, in the future.  


